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Abstract: Finding an optimal device structure in the vast

combinatorial design space of freeform nanophotonic

design has been an enormous challenge. In this study, we

propose physics-informed reinforcement learning (PIRL)

that combines the adjoint-based method with reinforce-

ment learning to improve the sample efficiency by an order

of magnitude compared to conventional reinforcement

learning and overcome the issue of local minima. To illus-

trate these advantages of PIRL over other conventional opti-

mization algorithms, we design a family of one-dimensional

metasurface beam deflectors using PIRL, exceeding most

reported records. We also explore the transfer learning

capability of PIRL that further improves sample efficiency

and demonstrate how the minimum feature size of the

design canbe enforced in PIRL through reward engineering.
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With its high sample efficiency, robustness, and ability to

seamlessly incorporate practical device design constraints,

our method offers a promising approach to highly combi-

natorial freeform device optimization in various physical

domains.
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1 Introduction

Nanophotonic devices, having carefully designed arrange-

ments of subwavelength elements that strongly interact

with incident light waves, enable precise control of the

amplitude, phase, and polarization of light at microscopic

scales, allowing for highly efficient thin-film solar cells

[1], optical information processing and computing [2], [3],

ultrathin lenses beyond the conventional limits [4]–[7], and

dynamic modulation of complex field amplitude [8]–[10].

The increasing demand for high-performance, multifunc-

tional nanophotonic devices requires a design method that

yields more performant devices than conventional fixed-

shape design methods, such as a freeform design approach,

which does not impose constraints on the shape or topol-

ogy of the device to explore potential design candidates

that were previously unattainable [11], [12]. However, due

to the large number of design parameters involved, the

computational load of electromagnetic simulation to gen-

erate the sample devices for structural optimization is sig-

nificantly heavier when adopting a freeform approach.

With the increasing demand for high-performance optical

devices in recent years, themethodology of optimizing their

structure has emerged as an important distinct discipline

within the field of opticalmeta-devices, apart from the tradi-

tional theoretical progress in optics based on physical intu-

itions. The adjoint-based method provides a route to handle

design problems involving a large design space thanks to its

high sample efficiency [13]–[15], but it is essentially a local
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optimization algorithm. Conventional population-based

heuristics, which have been popularly used for global struc-

tural optimization of photonic devices [16]–[18], become

inefficient when dealing with a large number of degrees

of freedom (DOF) [11]. This calls for an alternative method

for sample-efficient global optimization of nanophotonic

devices, and machine learning can be a promising candi-

date.

Developments in machine learning (ML) techniques

have revolutionized the field of photonic device design.

Recent studies have verified the capability of neural net-

works to approximate the relationship between a device’s

structure and its optical response [19]–[23]. Additionally,

generative models have been proposed to address inverse

design problems with high degrees of freedom (DOF)

[24]–[26]. Reinforcement learning (RL) [27], another branch

of ML, is recognized to be a competitive approach to solv-

ing combinatorial problems [28]–[30] that have large DOF.

A combinatorial problem involves counting, arranging, or

selecting objects or elements from a finite set according to

specified rules or constraints, and RL has achieved numer-

ous breakthroughs in various problems of combinatorial

nature, including the game of Go [31] and the AI accelerator

chip design [32], and has also been successfully employed

in designing optical metasurfaces [33], [34]. However, the

requirement for a large number of training samples in ML-

based methods raises concerns about the effectiveness of

utilizing neural networks in photonic device design, given

the substantial computational cost of electromagnetic sim-

ulation associated with device sample acquisition. But the

very fact that there is an underlying physics can ease the

requirement of a large number of training samples by seam-

lessly integrating physics and machine learning.

The practice of incorporating the physics of a system

into a neural network to enhance the sample efficiency of

machine learning has been investigated in various domains

of physical science. For neural networks aimed at predict-

ing physical quantities, such as electromagnetic fields [35],

fluid flow [36], and quantum mechanical wavefunctions

[37], the governing physical equations of each system can

be utilized during the training stage to ensure that the

predictions agree with the laws of physics. By incorporat-

ing this physics-informed approach, neural networks have

demonstrated the ability to provide accurate predictions

even in the absence of numerically simulated samples [38].

In the field of photonics, physics-informed neural networks

have also been employed for device design optimization and

inverse design [38], [39].

Similarly, efforts have been made to tackle RL chal-

lenges by incorporating physics information into the

training pipeline, aiming to simplify high-dimensional

continuous states into more intuitive representations and

achieve enhanced simulation accuracy. Notable examples

include research in the system control field [40], [41], as well

as in the computer science domain [42], [43]. However, there

have been limited advancements in incorporating physical

information into reinforcement learning (RL) within the

field of optics.

In this work, we introduce physics-informed rein-

forcement learning (PIRL), which combines the physical

information from the adjoint-based method with deep RL.

With PIRL, we address the optimization problem of a one-

dimensional freeform metasurface beam deflector with

a combinatorial design space as large as ∼1074. By pre-

training an RL agent using the physical information, PIRL

demonstrates significantly higher sample efficiency com-

pared to the previously developed RL approach [33]. More-

over,when compared to previous studies on the samedesign

problem, the optimal devices discovered through PIRL gen-

erally exhibit superior performance with reduced variance

in terms of the same figure of merit. We also demonstrate

that the sample efficiency of PIRL can be further enhanced

by employing the transfer learning method [44] to the RL

agent network from one design problem to similar prob-

lems. Finally, we show that practical device design con-

straints, such as enforcing a minimum feature size for fab-

rication compatibility, can be seamlessly incorporated into

our PIRL framework through simple reward engineering of

RL [27].

2 Problem setup and methods

Our design objective is to create a one-dimensional silicon

metagrating placed on a silica substrate. This metagrating

functions as a beam deflector for a normally incident trans-

verse magnetic (TM) polarized plane wave with a wave-

length 𝜆, redirecting the beam to a first-order diffraction

angle 𝜃, as illustrated in Figure 1(a). The refractive index of

silica is set to 1.45, and we use the same dispersion relation

for the refractive index of silicon as in previous publica-

tions on the same system [33], [39]. The height of the silicon

pillar is h = 325 nm, and the grating period is P = 𝜆/sin𝜃,

determined by the condition for first-order diffraction. The

period is divided into N = 256 uniform cells. Each cell

of the metagrating can be filled with either air or silicon,

and the metagrating structure is represented as a 1 × 256

array, st, where the ith element specifies the material of the

ith cell (+1 for Si and −1 for air), as shown in the right

panel of Figure 1(a). Our goal is to find an optimal struc-

ture that achieves the highest possible absolute deflection
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Figure 1: Summary of PIRL consisting of a pre-training stage and an RL optimization stage. (a) Schematic diagram illustrating the one-dimensional

metagrating and its state representation. The metagrating is composed of silicon pillars on a silicon dioxide substrate. The goal is to maximize the

first-order deflection efficiency, 𝜂, for normally incident light with transverse magnetic (TM) polarization. (b) The physics-informing pre-training stage

of PIRL. The U-net shaped agent network is pre-trained to predict the normalizedΔ𝜂approx of a given structure. The samples for network training are
generated by the adjoint-based method illustrated in the top panel. (c) Comparison ofΔ𝜂exact (blue),Δ𝜂approx (red), and the prediction result from the

pre-trained neural network (yellow dashed line). The structure on the horizontal axis is chosen as an example that might emerge during the RL stage.

(d) Illustration depicting how the agent interacts with the environment in RL. Definitions of state, action, and reward are provided. The pre-trained

agent network serves as the initial state of the agent’s network. (e) The parallelized RL stage comprises a master agent Q𝜔 and sixteen workers. Each

worker has a copy of the agent network obtained from the master agent and independently generates trajectories by interacting with the environment.

efficiency, 𝜂, at a givenwavelength and an angle. The deflec-

tion efficiency, 𝜂, is defined as the power of the deflected

beam to the first order when a beam of power unity is

incident from the silica substrate. We consider a target

range of deflection angles and wavelengths, 𝜆 = {900, 1000,

1100} nm and 𝜃 = {50, 60, 70} degrees, as adopted from

previous studies, for direct comparison [33], [39]. We focus

on the N = 256 case, which entails identifying an opti-

mal structure from approximately (2256/256) ≈ 1074 possible

configurations, excluding degeneracy resulting from cyclic

permutation. It is worth noting that the size of the design

space in this problem is comparable to the number of atoms

in the universe (∼1080) [45]. This problem setup has been

widely used as a testbed for comparing the performance of

optimization algorithms in photonics, hence is suitable for

testing the performance of the optimization framework we

introduce in this work [33], [39].

The overall procedure of PIRL comprises two stages:

a pre-training stage using supervised learning and a fine-

tuning stage using RL, as depicted in Figure 1(b–d), respec-

tively. During the pre-training stage, a neural network is

trained with the current state of the one-dimensional meta-

grating as an input, and a proxy of the efficiency gain (Δ𝜂)
associatedwith flipping each cell from Si to Air or vice versa

in themetagrating as a prediction. By leveraging the Lorentz

reciprocity [46], the gradient of 𝜂 with respect to the refrac-

tive indices of the cells, ni, can be estimated with only two

electromagnetic simulations regardless of the number of
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cells involved, as shown in the top panel of Figure 1(b) [47].

Using the efficiency gradient, 𝜕𝜂∕𝜕ni, the efficiency change

resulting from flipping the ith cell can be approximated as

Δ𝜂approx = (𝜕𝜂∕𝜕ni)Δni. Δ𝜂approx is then normalized by its

L2 norm for the stability of the training of the neural net-

work and used as an output of the supervised learning. The

input and output vectors of the adjoint gradient prediction

network have the same size N , and the ith entry of the out-

put vector is correlated to the Δ𝜂 of the device for flipping
the ith cell in the input structure. For the architecture of the

neural network, we employ a U-Net [48], which is commonly

used as a function approximator in the photonics domain

[21], [35]. In the U-Net, features are extracted from the input

through the encoding network and mapped to the output

through the decodingnetwork. Skip connections are utilized

between the encoding and decoding layers to preserve spa-

tial information. Additionally, to account for the periodic

nature of the deflector, our neural network employs cyclic

padding for the convolutional layers. Further details of the

network architecture are provided in Figure S1. The net-

work is trained to minimize the mean squared error loss

between the predictions and the normalizedΔ𝜂approx calcu-
lated from the adjoint-based method. The training dataset

consists of 20,000 pairs of structures and adjoint gradients,

with the number of training samples chosen to strike a bal-

ance between maximizing sample efficiency and achieving

higher training accuracy. The prediction error as a function

of the training sample size is plotted in Figure S2(a), and

additional information regarding the configuration of the

training dataset is presented in Figure S2(b).

The predictions of the pre-trained neural network cor-

relate well with Δ𝜂approx obtained from adjoint gradients,

as demonstrated in Figure 1(c). It is worth noting that the

actual efficiency difference resulting from a flip action,

Δ𝜂exact = 𝜂after flip − 𝜂before flip, may slightly differ from the

gradient-based Δ𝜂approx. This discrepancy arises because

the refractive index change associated with flipping a cell,

|Δn| = ||nSi − nair
|| ≈ 2.5, is substantial (Figure S3). However,

because calculating Δ𝜂exact for a device using a finite dif-
ference approach would require N + 1 = 257 simulations,

instead, we have opted to utilize Δ𝜂approx, which involves

only two simulations and is thus more than two orders

of magnitude computationally efficient. Despite the signif-

icantly reduced computational cost,Δ𝜂approx and the neural
network predictions exhibit a similar trend to Δ𝜂exact as
illustrated in Figure 1(c).

The pre-trained network is then utilized as the ini-

tial weights of the agent’s network in the RL stage, as

illustrated in Figure 1(d). Unlike the pre-trained network

that focuses on the immediate return of action, the RL

agent learns to pursue long-term returns, even if it entails

short-term losses, through deep Q-learning [59]. This aspect

is crucial for a global optimization method, since relying

solely on immediate rewards may lead to convergence to

local optima. During the RL stage, the agent explores the

design space by iteratively interacting with the environ-

ment. The environment in this context is modeled using

a rigorous coupled-wave analysis (RCWA) solver [49]. The

interaction involves exchanging information such as state,

action, and reward. The agent selects an action based on the

current state, and the environment provides a reward as a

consequence of the action.

In our approach, the state st is represented by a vector

of lengthN , which corresponds to themetagrating structure

as defined in the right panel of Figure 1(a). At each step

t, the transition from state st to st+1 occurs through the

action at. The action at is defined as flipping the material

(silicon and air) in one of the cells. Therefore, the action

space is the cell number (1, 2, . . . , N) that will be flipped.

The reward rt is defined as the change in optical efficiency

Δ𝜂 = 𝜂t+1 − 𝜂t resulting from the action at. This reward

setting allows the RL objective function, which is the sum

of sequential rewards, to be equivalent to the final change

in optical efficiency after a series of consecutive actions

along the trajectory. Introducing the discount factor 𝛾 , the

discounted return Gt is defined as Eq. (1), where R is the

reward function.

Gt =
T−t−1∑
t=0

𝛾 iR
(
st+i+1, at+i+1

)
(1)

We set 1>𝛾 ≥0.99 to ensure that the discounted return

provides a sufficiently accurate approximation of the net

change in deflection efficiency over the trajectory. By choos-

ing a value of 𝛾 close to 1, we emphasize the long-term

impact of actions on the overall optimization process. This

allows the RL agent to prioritize actions that lead to substan-

tial improvements in deflection efficiency, even if they result

in temporary reductions along the trajectory.

The trial-and-error process in RL is formally repre-

sented as a Markov decision process (MDP), described as

a time series tuple (st, at, rt, st+1). The policy 𝜋, also known

as the decision-making function, determines how the agent

selects actions at given a state st. The Q-function, Q𝜋 =
𝔼
[
Gt|st = s, at = a

]
, estimates the expected return of acting

at at state st, under the policy𝜋. This can be also rewritten as

Q𝜋 = 𝔼
[
rt+1 + 𝛾Q𝜋

(
st+1, at+1

)|st = s, at = a
]
, to derive opti-

mal Q-function Q
∗. Bellman optimality equation (Eq. (2))

[27] describes the recursive relationship of Q∗ with itself,

that optimal Q value equals the expected return for the

best action among possible actions a′ from that state. The

best action is the action that maximizes Q value. Practically,
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since the exact Q∗ cannot be explicitly evaluated due to the

huge state space, a neural network is used as a function

approximator.

Q
∗ = 𝔼

[
rt+1 + 𝛾max

a′
Q
∗(
st+1, a

′)|st = s, at = a

]
(2)

In this study, we utilize a physics-informed neural net-

work denoted as Q𝜔(s, a) to model the Q-function. This neu-

ral network takes a state vector as an input and predicts

the Q-value for each action as the output. The Q𝜔(s, a) is

physics-informed as it is initializedwith the adjoint gradient

predicting network at the beginning of the RL process.

During RL, the agent follows the epsilon-greedy

algorithm [27]. In this algorithm, the agent chooses either

a random action with a probability 𝜀 (exploration) or

the action with the highest Q-value according to Q
𝜔(s, a)

(exploitation). The exploration probability, 𝜀, linearly

decreases from 0.99 (exploration-dominant) to 0.01

(exploitation-dominant) during the first half of the RL stage

and remains constant at 0.01 during the second half.

Throughout the RL stage, the agent accumulates a tra-

jectory consisting of states, actions, and rewards in the expe-

rience replay buffer, which serves as the agent’s memory.

The agent is trained using randomly selected data from

the replay buffer. The weights of the agent’s network are

updated using the Huber loss [50] and Adam optimizer

[51]. The summary of the PIRL algorithm is provided in

Tables S1, 2.

The computation involved in the RL process is paral-

lelized using Ray [52] as depicted in Figure 1(e). This paral-

lelization allows for data collection bymultiple workers and

asynchronous network updates [53]. In this setup, sixteen

workers each have their own copy of the central Q-network

and interact with their own copy of the environment in par-

allel, collecting trajectories and storing them in the central

experience replay buffer. All the hyperparameters used in

the RL stage are provided in Table S6. The total number of

electromagnetic simulations performed during the RL stage

is set to 200,000, which is comparable to previous work on

the same design problem [39]. Each RL stage takes approx-

imately 1.3 h to complete on a server computer equipped

with four Nvidia RTX 3080 GPUs and two Intel Xeon Gold

5220 processors.

3 Results/discussions

3.1 Performance of PIRL

The PIRL algorithm generally outperforms other device

optimization methods. Figure 2(a) illustrates the optimiza-

tion curves of various methods for the representative case

of 𝜆 = 1100 nm and 𝜃 = 60◦. The optimization statistics

were collected from ten different executions. The RL-based

approaches exhibit a gradual increase in efficiency as the

number of simulations increases. In contrast, the greedy

Figure 2: Performance of PIRL compared with other algorithms. (a) Optimization curves showing the maximum values of the deflection efficiency

obtained using U-Net based PIRL (blue), U-Net based uninformed RL (red), fully connected network (FCN) based uninformed RL (green), genetic

algorithm (GA) (yellow), random search algorithm (orange), and greedy algorithm (gray) under the target condition 𝜆= 1100 nm, 𝜃 = 60◦. Each

algorithm was executed ten times. The solid line represents the average maximum efficiency, and the shaded area represents the standard deviation

over the ten runs. The result of the greedy algorithm has been truncated before 30,000 simulations since every run of the greedy algorithm converged

to the maximum before the stop. (b) The maximum deflection efficiency of each algorithm over the ten runs. The gray bar represents the maximum of

the best deflection efficiencies from the ten optimization runs, the orange bar represents the average value of the ten best deflection efficiencies, and

their standard deviation is displayed as an I-shaped error bar in the graph. The numerical values of the average, standard deviation, and maximum

can be found in Table 1. A summarized algorithm table comparing the algorithms can be found in Tables S1–5. The time consumption of each

optimization process is summarized in Table S8. The data for GLOnet was extracted from Jiaqi Jiang et al. [58].
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algorithm, which selects the cell with the highest efficiency

gain (Δ𝜂) at each step, quickly converges to a local opti-

mumwith high dependence on initial conditions. If the PIRL

agent is not trained during the RL stage and instead follows

the adjoint gradient learned during the physics-informed

pre-training stage, the optimization curve would resemble

that of the greedy algorithm since the adjoint gradient pre-

dicts immediate rewards. However, by training the agent to

approximate the discounted return inEq. (1), the agent effec-

tively mimics an infinite-depth greedy algorithm. This leads

to slower convergence but with higher terminal efficiency.

On the other hand, the optimization curve of the genetic

algorithm (GA) shows slower convergence compared to the

RL-based methods and does not reach an optimum value

within 200,000 simulations. While there is a possibility for

the GA to eventually find a better device, its low sample

efficiency limits its effectiveness in optimizing devices with

high degrees of freedom (DOF).

Among the RL variants, PIRL achieves the highest

deflection efficiency with the fastest rate of improvement.

Uninformed RL, where the Q-networks are randomly ini-

tialized without pre-training, is tested with two different

network architectures: U-Net and a fully connected network

(FCN). Between the two versions, U-Net outperforms FCN

in terms of convergence speed and final 𝜂 value. Despite

having a similar number of trainable weights as FCN, the

inherent network architecture of U-Net, which specializes

inmapping geometric features from inputs to outputs, likely

contributes to its superior performance.

Figure 2(b) summarizes the performance of various

optimization methods, demonstrating that PIRL also out-

performs the adjoint-based method and a physics-assisted

generative model GLOnet [39] in terms of average and max-

imum optimized 𝜂 for this specific problem. This can be

qualitatively explained as follows: While the adjoint-based

method is highly likely to fall into local optima, PIRL miti-

gates this issue by training a deep network during the RL

stage (Supplementary S6). Moreover, while GLOnet relies

on its stochastic nature, our method, which continually

improves as the RL agent learns over time, resulted in better

design than GLOnet, except in a few cases where GLOnet

has a chance to discover exceptional structures. This trend

is consistent across problems with different target condi-

tions, as summarized in Table 1. It is important to note,

however, that the results presented in Figure 2(b) andTable 1

should be taken with a grain of salt, as fine-tuning each

algorithm could lead to improved results. A summary of

each algorithm can be found in Tables S1–5. Furthermore,

the optimization results from physics informed, FCN net-

work is summarized in Figure S4 and Table S7.

3.2 Transfer learning with different target
deflection angle conditions

Transfer learning [44] can enhance the sample efficiency

of PIRL. In transfer learning, a neural network trained for

a specific wavelength and deflection angle can be utilized

for optimizing devices with different wavelength or angle

conditions. There are two types of transfer learning appli-

cable to PIRL, which are color-coded in blue and green in

Figure 3(a). The first type involves transferring a pre-trained

network to a different condition, while the second type

transfers the fully optimized agent network from one con-

dition to another. Figure 3(a) also depicts the regular PIRL

Table 1:Maximum, average, and standard deviation of final devices from PIRL, GLOnet, and adjoint-based method for target conditions of 𝜆=
{900 nm, 1000 nm, 1100 nm} and 𝜃 = {50◦, 60◦, 70◦}. The reported number in PIRL column is based on the results obtained at epoch 180,000 of RL

stage, as 20,000 device samples have been used in the pretraining stage.

Target condition PIRL GLOnet [55] Adjoint-based method [55]

𝝀 𝜽 Max Mean± Std dev Max Mean± Std dev Max Mean± Std dev

900 nm

50◦ 97.4 .± 1.3  90± 10 93 64± 16

60◦ . .± 0.2 97 73± 18 93 59± 18

70◦ . .± 0.4 98 83± 14 92 59± 13

1000 nm

50◦ . .± 6.2 96 85± 12 95 55± 16

60◦ . .± 1.3 98 85± 17 92 56± 14

70◦ . .± 4.3  76± 18 84 62± 12

1100 nm

50◦ . .± 3.5 91 77± 11 91 49± 10

60◦ . .± 4.7 80 59± 17 79 52± 15

70◦ . .± 3.6  65± 14  59± 14

The bold values represent highest maximum and average value of device performance for each physical condition.
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Figure 3: Transfer learning of PIRL with different target deflection angle conditions. (a) Schematic diagram illustrating two different transfer learning

processes. In the first case (blue arrow), a neural network trained with the adjoint gradients of condition (𝜃1, 𝜆1) is used as the initial network for the RL

agent optimizing the problem (𝜃2, 𝜆2). In the second case (green arrow), the neural network that underwent the full PIRL process for condition (𝜃1, 𝜆1)

is used as the initial network for the RL agent optimizing the problem (𝜃2, 𝜆2). (b) Maximum deflection efficiency of the device obtained using each

transfer learning method. Both PIRL and transfer RL with a pre-trained network outperform transfer RL with a fully-trained network and uninformed

RL. The averages and standard deviations can be found in Figure S6.

and uninformed RL without any transfer learning, shown

in gray and orange, respectively.

To assess the effectiveness of transfer learning, we com-

pare the deflection efficiencies of the final devices obtained

from both transfer learning cases with the outcomes of PIRL

and uninformed RL, as presented in Figure 3(b). Surpris-

ingly, even when using a pre-trained model with a mis-

matched pre-training dataset for 𝜆 = 1100 nm and 𝜃 =
60◦, transferring it to other angle conditions yields opti-

mization performance similar to that of proper PIRL, which

significantly outperforms uninformed RL. These results are

remarkable because the state vector, i.e. the configuration

of the deflection grating, optimized for one condition often

leads to much lower deflection efficiency for a different

target condition, as demonstrated in Figure S5.

In contrast, transferring a fully trained RL agent from

one condition to another proves to be ineffective and yields

results comparable to those of uninformed RL with a ran-

domly initialized Q network. Although the fully trained

agent typically starts with better optimization performance,

it eventually converges into a low-performance device. In

other words, it appears that a pre-trained network exhibits

enough flexibility to adapt to a new target condition, while

a fully trained network is too rigid to effectively learn new

strategies to escape the local optimum from which it starts.

Similar behaviors of pre-trained deep neural networks for

fine-tuning have been observed in previous studies of meta-

learning [54].

3.3 Enforcing the minimum feature size

In general, optimal devices found using the PIRL which

does not constrain the minimum feature size (MFS) lack

fabricability. For example, the device optimized for 𝜆 =
1100 nm and 𝜃 = 60◦ in Figure 4(a) can hardly be fabricated

even with cutting-edge facilities. This is because the MFS

of the device is approximately 5 nm, which corresponds to

the width of a single cell in the design grid. Simply remov-

ing these small features through a Gaussian filter with a

half-MFS standard deviation is not a viable solution, as it

leads to a catastrophic failure with a drastic drop of 90 %p

in deflection efficiency, as shown in Figure 4(b).

To address these fabricability concerns, we propose a

method for enforcing the MFS constraint within the PIRL

framework by modifying the reward function. In the MFS-

enforced PIRL, fabricability is incorporated into the reward

by subtracting a penalty function 𝛼ΔB from the original

reward Δ𝜂. Here, B represents the number of pillars or

gaps that fall below the MFS limit, and 𝛼 is a penalty con-

stant that determines the level of enforcement. The value

of 𝛼 is empirically determined by selecting the minimum

value that ensures the device satisfies theMFS condition. It’s

important to note that with this reward setting, the undis-

counted return corresponds to the net change in efficiency

over the trajectory, assuming the final structure doesn’t vio-

late the MFS constraint.

Figure 4(c) showcases the optimized structure obtained

using theMFS-enforced PIRL forN = 256 andMFS= 16 cells,

with 𝛼 set to 0.1. It achieves a deflection efficiency of 74.0 %,

significantly surpassing the optimal structure among the

subset of N = 16 (Figure 4(d)). Our method also discovered

a device with an efficiency of 85.1 % for the problem of N =
256 and MFS = 8 cells, outperforming the optimum found

for N = 32 by 1.3 %.

Another approach to enforcing theMFS constraint is by

reducing the number of grid cells, N , to match the required
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Figure 4: Electric field profiles from beam deflectors designed for a target condition of 𝜆= 1100 nm and 𝜃 = 60◦. All electric field profiles are

normalized to the electric field intensity of the incident wave. (a) Structure of the highest deflection efficiency device found with PIRL along with the

corresponding electric field distribution. However, this device cannot be fabricated even with cutting-edge fabrication techniques. (b) Structure and

electric field resulting from the Gaussian-filtered device. The device found with PIRL is filtered using a Gaussian filter with a standard deviation 𝜎 = 4

and then binarized. Although the minimum feature size is increased to eighteen, the deflection efficiency drops by 86.45 %p. (c) Electric field profile

and device structure of the beam deflector obtained from MFS-enforced PIRL. The smallest feature in the device is a gap of 16 cells. (d) Electric field

profile and device structure of the beam deflector obtained from the resolution-limited device (DOF= 16). An exhaustive search was conducted to find

the true global optimum.

MFS. However, this coarse grid approach is also undesirable

because it confines the design space to a tiny subset of

possible outcomes as gaps between features smaller than

the minimum feature size can be fabricated in reality. Even

the global optimum structure obtained from an exhaustive

search within this limited design space has a significantly

lower deflection efficiency. For example, the global opti-

mum structure obtained for N = 16 (MFS ∼ 80 nm), as

depicted in Figure 4(d), achieves a deflection efficiency of

68.1 %. This is more than 5 %p lower than the optimal struc-

ture found for the same MFS with N = 256 in Figure 4(c),

which is found using MFS-enforced PIRL.

4 Conclusions

This work represents the initial endeavor to incorporate

physical information (adjoint gradient) into RL for the

design of highly complex optical devices. In this work, we

introduce PIRL, a method that integrates physical informa-

tion from the adjoint-based method into RL for designing

highly complex optical devices. By initializing the RL agent’s

network with the figure-of-merit gradient, we significantly

enhance the sample efficiency for optimizing the structure,

surpassing the previous work by more than an order of

magnitude [33]. To demonstrate the effectiveness of PIRL,

we directly compare it with other existingmethods, ranging

from conventional genetic algorithms to deep generative

models [39]. Furthermore, we show that transfer learning

can further improve the sample efficiency of PIRL by suc-

cessfully transferring networks between design problems

with different target conditions. Additionally, we address

the need for fabrication feasibility by modifying PIRL to

enforce a minimum feature size in devices through reward

engineering.

The optimization framework canbe applied to optimize

other devices where the adjoint gradient can be calculated,

such as a two-dimensional metagrating, or a meta lens. Fur-

thermore, the developed method can be extended to other

techniques as long as the simulation tool allows for the

calculation of local gradients of each design element within

a limited number of simulations. For instance, automatic

differentiation-enabled RCWA tools have the capability to

compute local gradients of design elements in a compa-

rable timescale to the adjoint method [49], [55]–[57]. By

combining such tools with PIRL, the optimization of devices

with intricate figure-of-merit functions becomes feasible.

We anticipate that this optimization method will empower

RL to address seemingly intractable problems in photonics

device design.
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