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S1: lys-Vas response at zero gate bias and under different illumination power.

The DarkO0 is the initial dark current, and Dark(i), i=1,2,3,...,7 indicates the other dark current after illumination of

respective laser power.
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Figure S1: a) las-Vasand b) the enlarged curve after and during illumination of different power.



S2: Photovoltage under different illumination power and Vy;i after illumination

In the photovoltaic effect, photogenerated e—h pairs are separated by an internal electric field that originates from the
Schottky barrier at the interface between graphene and metal. The photovoltage (Vev) of the Gr/WSe2 vdWH can be
calculated from the output curve under illumination, as shown in Figure S2. The intercept of the las-Vas curve indicates
the open-circuit voltage, that is the photovoltage. The slope of the lss-Vas curve indicates the built-in electrical potential
difference (Vbi). It is found that the Viiis ~0.2 mV and the Vpv is in the range of 0.4-0.6 mV. Due to asymmetry of the drain
and source, there is a non-zero photovoltage Vp, = AV, — AV, and a resultant photocurrent even at Vg = 0[1]. The
band diagram at the graphene-metal interface is shown in Figure S2(c). Furthermore, to provide a theoretical outlook,

the potential step AV is given by

AV = sgn (Vgs - Vdirac)hvf ’na“(gs - Vdiracl — AErm

Ly« (npAVp — ngAVs)

where @ = 7.2 x 10'°cm™2V 1, hv; = 5.52eVA, AEf,, is the fermi level shift of metal contacted graphene and n* is

the photogenerated carrier.
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Figure S2: Photovoltage (Vev) and built-in electrical potential difference (Vbi) induced by drain-source asymmetry under
different optical power determined from the intercept and slope of the l¢s-Vgs curve. c) Band-bending resulting in

photovoltage along the lateral junction.
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Figure S3: Dynamic a) las and b) Ioh change at V=0V and different Pin for a series of Vs.
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Figure S4: The repeatability of the dynamic photocurrent current change at Vgs=0V and different Pi, for a constant

Vds=1 mV.



S3: lus-Vgs shift of the device after illumination.
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Figure S5. /4s-Vgs shift after illumination. Dark line, red line, and blue line represent the dark current before illumination,

the current under illumination at Pin= 0.5 mW, and the dark current after illumination, respectively.



S4: Modelling the effect of impurity density on the carrier transport in graphene.

The carrier transport in graphene in presence of scattering from charged impurities was modelled based on the work of

Adman et al. [2]

*

= 212Co(r; = 0.8,a = 4dvmn* )
nimp

where Co=-1+ (:ilr(:iz + 2;_2;5 + (1 + 2rya)e?s*(E;[2r,a] — E;[a(1 + 2r;a)]

and the exponential integral Ei(2) = fzoo t e tdt
The Dirac point shift depends on impurity density, which is given as:
Vdirar_' = eﬁcox

where, Cox is the capacitance per unit area of the dielectric layer (SiO2). Cox=€/d, d being the thickness of the dielectric,

which is equal to 300nm. Thus, the carrier density n is given by:

n= /nf, + 4nZ,..
* 2
Nmin = w/ " /2) +4nf,

where nth is the thermal/intrinsic carrier concentration and ngis the carrier density change due to applied gate bias, V.
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The change in mobility due to change in impurity, density can be expressed as[3]:

n _ nimp,re f
Hre f nimp
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Figure S6. Simulated transfer curve for the dark current las by increasing the impurity density for carrier scattering that

affects the conductance of graphene channel.
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Figure S7. Normalized photoresponse of the synaptic device at different Pi» for a constant Vgs=0.01 mV.



S5: Fabrication process
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Figure S8. Fabrication process flow of Gr/WSe2 vdWH devices. a) Dry-transferring mechanical exfoliated WSe2 multi-layer
flake to the SiO2/Si substrate. b) WSez with random shape is on the surface of SiO2/Si substrate. c) Patterning the WSe>
flake into a 15 umx5um rectangle through photolithograph and XFa gas etching. d) Wet-transferring monolayer graphene
over the WSez. e) Patterning the monolayer graphene to a ribbon with length and width of 20 pm and 10 um through
photolithograph and Oz plasma dry-etching. f) Laser writing and e-beam evaporation are used to define contacts to the
heterostructures, where source (s) and drain (d) Ti/Au (5 nm/50 nm) contacts are evaporated to contact the graphene

ribbon. (g) Cross section of Gr/WSe2 vdWH devices.



S6: Photoelectronic test system
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Figure S9. Photoelectronic test system
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