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Supplementary Note 1. Radiative and dissipative loss rates of the metasurface 

Following the formalism of the TCMT (temporal coupled mode theory) section below, we can 

extract the values of the qBIC (quasi-bound states in the continuum) radiative loss rate and its 

dissipative loss rate respectively, from full wave electromagnetic simulation results of a setup with 

a graphene sheet deposited through the entire unit cell underneath the Si pillars. In this setup 

graphene plasmons will be off-resonance and too weak to play a role, therefore satisfying the 

condition of a singular resonance (the qBIC) system and simplifying the equations down to 

Supplementary Eq. 1, discussed in Supplementary Note 3. The extracted radiative loss rates and 

the dissipative loss rates of the qBIC depending on the metasurface structural changes are shown 

in Supplementary Fig. 1. We can note that the structural changes do not largely affect dissipative 

loss rates, whereas they heavily influence radiative loss rates.  

 

Supplementary Figure 1. The dependence of the qBIC’s radiative and dissipative loss rates with 

respect to structural parameters. The dependence with respect to a, the Si pillar post width b, the post 

height c, the 𝛿 and d, the substrate thickness. The dissipative loss rates are not largely affected by the 

changes in the structural geometry, whereas the radiative coupling is heavily influenced by the structural 

changes due to the corresponding changes in the strengths of symmetry-breaking-induced dipole moments. 

 

1.1 Radiative loss rates  

The radiative loss is largely affected because it is dependent on the strength of the dipole moment 

(allowing coupling to free-space radiation) that is formed due to the dimerization (symmetry-

breaking) of the metasurface, and this is greatly influenced by the structural changes. For example, 

raising the height of the Si pillars would increase the amount of charge accumulation that leads to 

a dipole formation, resulting in a larger radiative coupling. Increasing post width will decrease the 

central gap, leading to a shorter dipole length/smaller dipole moment and therefore a lower 

radiative loss rate. The dimerizing perturbation 𝛿 is defined to express the percentage of the shift 
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of the center of the Si pillars in the direction of dimerization, and the magnitude of the shift is 

defined by 𝛿𝛬/2. The dimerizing perturbation 𝛿 affects the degree of the perturbation (symmetry 

breaking/dimerization) and a larger delta would correspond to a larger dipole moment, resulting 

in a larger radiative coupling. This relation is shown to be linear in the limit of smaller perturbation 

and non-linear as the perturbation gets larger (33). The substrate thickness changes the degree of 

the Fabry-Perot effect between the back-reflector and the Si pillars, and the radiative coupling 

draws a rough sinusoidal shape as the dipole moment is affected by the constructive/destructive 

interference with the light reflected from the back reflector.  

 

1.2 Dissipative loss rates 

The dissipative loss rate, on the other hand, is not majorly affected by structural changes but instead 

greatly on the changes in the graphene Fermi level. This is shown in Supplementary Fig. 2a, where 

the initial hump of the dissipative loss rate near 0 eV is due to the interband transition losses and 

the steady increase from 0.2 eV is due to the changes in the intraband transition losses. The 

resonance frequency of the qBIC is roughly 41 THz, which would mean that at this frequency 

interband transition losses would be cut off from around roughly 0.08-0.09 eV due to Pauli 

blocking and the corresponding change in the graphene’s optical conductivity (27). This explains 

the drop in the dissipative loss rate from 0 eV to 0.2 eV. Then the intraband scattering in graphene 

slowly increases as the Fermi level increases due to the rise in the carrier density and an increase 

in the optical conductivity (27), which explains the steady increase in the dissipative loss rate. 

We can employ graphene plasmons as well as the qBIC by depositing graphene ribbons between 

the Si pillars, as opposed to a whole graphene sheet underneath the Si pillars throughout the unit 

cell. In this case, the coupling between the qBIC and the graphene plasmon affects the radiative 

and the dissipative loss rates and therefore the extracted loss rate values from using a single 

resonance TCMT model becomes unreliable. Using the two-resonance TCMT model explained 

below would entail too many parameters at once and the extraction of the loss rate values would 

be unviable as well. This is shown in Supplementary Fig. 2b, where the high coupling zone region 

from 0.5-0.8 eV is denoted by a grey box. The loss rate values for the qBIC shows a similar trend 

to that of Supplementary Fig. 2a, with slight differences in the high Fermi level range due to the 

presence of graphene plasmons occurring in the side graphene ribbons. This can be seen in Fig. 3e 

of the main paper, where GP2 (the secondary graphene plasmon) approaches the qBIC line and 
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further broadens the linewidth. This would technically introduce errors to our loss rate extraction 

method based on the single resonance TCMT model explained below. The loss rates for the 

graphene plasmon are shown as well, with the dissipative loss rate nicely following the DC 

scattering rate 1/𝜏 = 𝑒𝑣𝐹
2/𝐸𝐹𝜇 where 𝑒 is the electron charge, 𝜇 is the mobility currently set at 

1000 cm2/(V⋅s), and 𝑣𝐹 ≈ 𝑐/300 is the Fermi velocity (42). The graphene plasmon is a dipole 

radiator as can be seen Fig. 4c of the main paper, and radiation from a dipole radiator increases as 

the frequency of the radiation increases (43). Because the resonance frequency of the graphene 

plasmon drastically increases as the Fermi level is increased (Fig. 3e of the main paper), its 

radiative loss rate also increases until the high coupling zone.  

 

Supplementary Figure 2. The dependence of the radiative and dissipative loss rates with respect to 

the graphene Fermi level. a, The qBIC’s radiative loss rate is not largely affected by the changes in the 

graphene fermi level, whereas it heavily influences the dissipative loss rate due to the interband/intraband 

scattering in graphene. b, Dissipative loss rates for both the qBIC and graphene plasmons (employed 

through graphene ribbons as opposed to a graphene sheet in a). The qBIC’s radiative and dissipative loss 

rates follow a similar trend to that in a with the coupling between the qBIC and the graphene plasmon, as 

well as the effect of a secondary graphene plasmon from the side graphene ribbons, playing a significant 

role in the higher fermi levels close to 1 eV.  
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Supplementary Note 2. Structure parameter optimization 

Since the optical response of our graphene - Si structure involves complicated dynamics of both 

qBIC and graphene plasmon resonances, the operating wavelength and the corresponding 

geometric parameters have to be numerically optimized and fine-tuned. For this purpose, we 

employed Reticolo RCWA (rigorous coupled-wave analysis) software (44,45) and the gradient-

free algorithm BOBYQA (bound optimization by quadratic approximation) (46,47) to obtain the 

exact geometric parameters for maximal phase modulation.  

First, we defined a figure of merit (FoM) in order to quantify the phase modulation performance. 

The FoM was defined as the area enclosed by the complex reflectivity curve drawn on the complex 

plane as the graphene Fermi level being tuned at a single target frequency. This definition 

facilitated with the simultaneous optimization of both the reflection amplitude and the phase 

coverage.  

Second, we utilized the gradient-free algorithm BOBYQA for the structural parameter 

optimization. Gradient-free algorithms are suitable for problems in which calculating the objective 

function gradient over the design variable space is infeasible or impossible. Our structure 

exhibiting complicated dynamics with respect to changes in geometry that is analytically 

intractable, making gradient-free algorithm a preferred optimization algorithm over gradient-based 

algorithms. 

To complete the optimization program we had to find a suitable simulation tool for our structure. 

We found that RCWA method was proper for this task, since its simulation times are much faster 

than that of FDTD (finite-difference time-domain) or FEM (finite element method) methods, while 

providing satisfactory accuracy. For the graphene sheet case, the Fourier order needed to reproduce 

similar reflectance spectra to FEM results was only 100, for which evaluating 51 Fermi energy 

points took less than 5 seconds on our server computer (Intel E5-2680v4). However, for the 

graphene ribbon case, the required Fourier order was about 600, which took roughly 200 times 

longer than that of the case with 100 Fourier orders. The reason for such a long computation time 

stems from the extremely narrow width of the graphene nanoribbons compared to the structure 

period. In order to bypass this problem, we first optimize geometric structural parameters for a 

maximum FOM at low Fourier orders, and then set the obtained geometric parameters as an initial 
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point for the next optimization procedure with higher Fourier orders. This gradual increase of the 

Fourier orders rendered the simulation more accurate. 

Finally, the simulation results generated by the RCWA was compared to that of the commercial 

FEM tool (COMSOL Multiphysics), which demonstrated excellent agreement. 
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Supplementary Note 3. Temporal coupled mode theory (TCMT) 

From (48), it is shown that the governing equation for a system with two resonances is  

d𝐚

d𝑡
= (−𝑖𝛀 − 𝚪)𝐚 + 𝐊𝑠+ 

𝑠− = 𝐶𝑠+ + 𝐃𝐚 

Since our system has only one radiative channel, 𝑠+ (input), 𝑠− (output), and 𝐶 are scalar.  

Eigenmode amplitudes (quasi-BIC and graphene plasmon resonance) are expressed as 𝐚 = (
𝑎1

𝑎2
), 

and the matrix terms are given as follows: 

𝛀 = (
𝜔1 𝑢
𝑢 𝜔2

) , 𝚪 = (
𝛾1𝑟 𝛾12

𝛾21 𝛾2𝑟
)  

Here, 𝜔1 and 𝜔2 are the resonance frequencies and 𝛾1𝑟 and 𝛾2𝑟 are the radiative decay rates of the 

modes. The off-diagonal terms describe the coupling between the modes. For now, we assume that 

there is no dissipative loss. 

𝐊 = (
𝑘1

𝑘2
) , 𝐃 = (𝑑1 𝑑2) 

𝐊 describes the coupling from the input channel (s+) to the resonant modes, while 𝐃 describes the 

coupling from the resonant modes to the output channel (s−). 

 

From the following conditions, the coefficients can be determined as follows: 

(i) By energy conservation, 𝐃†𝐃 = 𝟐𝚪: 

(
𝑑1

∗𝑑1 𝑑1
∗𝑑2

𝑑2
∗𝑑1 𝑑2

∗𝑑2
) = (

2𝛾1𝑟 2𝛾12

2𝛾21 2𝛾2𝑟
) → {

|𝑑1,2| = √2𝛾1,2𝑟

𝛾12 = 𝛾21
∗ = √𝛾1𝑟𝛾2𝑟𝑒𝑖(𝜃2−𝜃1)

  

where 𝜃1 and 𝜃2 are the arguments of 𝑑1 and 𝑑2, respectively. 

(ii) By reciprocity, 𝐊T = 𝐃 and 𝐶𝐃∗ = −𝐃: 

𝑘1,2 = 𝑑1,2 = √2𝛾1,2𝑟𝑒𝑖𝜃1,2 

𝐶 (
√2𝛾1𝑟𝑒−𝑖𝜃1

√2𝛾2𝑟𝑒−𝑖𝜃2
)

T

= − (
√2𝛾1𝑟𝑒𝑖𝜃1

√2𝛾2𝑟𝑒𝑖𝜃2
)

T

→ 𝐶 = −𝑒2𝑖𝜃1 = −𝑒2𝑖𝜃2 → 𝑒𝑖(𝜃2−𝜃1) = ±1 

Therefore, 𝛾12 = 𝛾21 = ±√𝛾1𝑟𝛾2𝑟.  

Small material losses (𝛾1𝑑 and 𝛾2𝑑) can be included perturbatively as  

𝚪 = (
𝛾1𝑟 + 𝛾1𝑑 ±√𝛾1𝑟𝛾2𝑟

±√𝛾1𝑟𝛾2𝑟 𝛾2𝑟 + 𝛾2𝑑

) 
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At a steady state under illumination of light at a fixed frequency 𝜔,  

−𝑖𝜔𝐈𝐚 = (−𝑖𝛀 − 𝚪)𝐚 + 𝐊𝑠+ → 𝐚 = 𝑖(𝜔𝐈 − 𝛀 + 𝑖𝚪)−1𝐊𝑠+ 

𝑠− = 𝐶𝑠+ + 𝐃𝐚 = 𝐶𝑠+ + 𝑖𝐃(𝜔𝐈 − 𝛀 + 𝑖𝚪)−1𝐊𝑠+ → 𝑟 =
𝑠−

𝑠+
= 𝐶 + 𝑖𝐃(𝜔𝐈 − 𝛀 + 𝑖𝚪)−1𝐃T 

𝑟 = 𝑒𝑖2𝜃1 [−1 + 2𝑖
𝛾1𝑟(𝜔 − 𝜔2 + 𝑖𝛾2𝑑) + 𝛾2𝑟(𝜔 − 𝜔1 + 𝑖𝛾1𝑑) ± 2𝑢√𝛾1𝑟𝛾2𝑟

(𝜔 − 𝜔1 + 𝑖(𝛾1𝑟 + 𝛾1𝑑))(𝜔 − 𝜔2 + 𝑖(𝛾2𝑟 + 𝛾2𝑑)) − (𝑢 ∓ 𝑖√𝛾1𝑟𝛾2𝑟)2
] 

Note that, 𝜙0 = 𝜋 − 2𝜃1 is the phase shift upon reflection in the absence of resonances. 

Similarly, for a single resonance with a single radiation channel, the complex reflection amplitude 

is given by (ignoring the overall phase shift): 

          𝑟 = −1 + 2𝑖
𝛾1𝑟

(𝜔 − 𝜔1 + 𝑖(𝛾1𝑟 + 𝛾1𝑑))

=
(𝛾1𝑟 − 𝛾1𝑑) − 𝑖(𝜔 − 𝜔1)

(𝛾1𝑟 + 𝛾1𝑑) + 𝑖(𝜔 − 𝜔1)
     (Supplementary Eq. 1) 

This leads to the reflectance and the FWHM: 

𝑅 = |𝑟|2 = 1 − 4
𝛾𝑟𝛾𝑑

(𝛾𝑟 + 𝛾𝑑)2
= 1 −

4𝑝

(𝑝 + 1)2
  𝑝 =

𝛾𝑟

𝛾𝑑
 

FWHM = 2(𝛾𝑟 + 𝛾𝑑) 
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Supplementary Note 4. Comparison of the theoretical TCMT model and 

simulation results 

With the analytical two-resonance model for the complex reflection amplitude 𝑟, we can compare 

the theoretical reflectance spectra for an avoided crossing with two resonances and that of the 

simulation obtained from full wave simulations (Fig. 3 of the main paper). To model the resonance 

frequency of the qBIC as a function of fermi level, we assumed that the qBIC resonance follows a 

linear trend due to the perturbative change of the graphene permittivity with respect to a much 

larger qBIC mode volume spanned around the Si pillars. The fitting parameters were chosen as 

𝜔𝑞𝐵𝐼𝐶 = 𝑐1𝐸𝐹 + 𝑐2  with 𝑐1 = 0.4188 THz/eV  and 𝑐2 = 41.1351 THz  to fit the full wave 

simulation results. For the graphene plasmon it is known that 𝜔𝐺𝑃 ∝ √𝐸𝐹 (27), and to fit it to the 

simulation results we set 𝜔𝐺𝑃 = 𝑐3√𝐸𝐹 with 𝑐3 = 52.65 THz/eV1/2.The coupling constant 𝑢 in 

the TCMT section above was taken to be 𝑢 = −1.03 THz to fit the simulation results. For the 

qBIC’s radiative loss rate we took the constant value of 1011 Hz from Supplementary Fig. 2a, and 

for the dissipative loss rate we took the data from Supplementary Fig. 2a and multiplied a constant 

of 0.539 to equalize the value to that of Supplementary Fig. 2b at the fermi level 0 eV (the furthest 

away from the high coupling zone and the secondary graphene plasmon effects). For the graphene 

plasmon’s dissipative loss rate we used the DC scattering rate 1/𝜏 = 𝑒𝑣𝐹
2/𝐸𝐹𝜇   with the 

corresponding parameters. For its radiative loss rate we took the average of 3 × 1011 Hz at the 

beginning of the high coupling zone and 1 × 1011 Hz at the end of the high coupling zone and 

used the value of 2 × 1011 Hz, because it's within the high coupling zone that the effects of 

avoided crossing would dominantly occur.  
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Supplementary Note 5. Device performance and the spectral line-cuts 

 

 
Supplementary Figure 3. Device performance and the spectral line-cuts. a, The amplitude and phase 

of the graphene ribbon structure with the avoided crossing, the theoretical TCMT case with the avoided 

crossing, and the unpatterned graphene case without the avoided crossing. b, The spectral line-cuts of the 

5 notable Fermi level values for the graphene ribbon structure case that illustrate how the two resonances 

sweep across the operating frequency. 
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Supplementary Note 6. Phase modulation performance dependence on the 

TCMT parameters 

We investigated whether it was better performance-wise for the spectrally narrow resonance to 

have the smallest FWHM as possible and for the second resonance to have the greatest ∆𝜔 as 

possible. In general, the decreasing FWHM of the spectrally narrow resonance (denoted as 

Resonance 1 hereafter) with respect to ∆𝜔 of the second resonance (denoted as Resonance 2 

hereafter) leads to a better device performance (See Fig. 1b main text). However, there exist a few 

additional requirements that must be satisfied simultaneously:  

• Resonance 1 should be highly over-coupled (𝜸𝟏𝒓 ≫ 𝜸𝟏𝒅): The FWHM of Resonance 1 can 

be decomposed to FWHM1 = 2(𝛾1𝑟 + 𝛾1𝑑) , where 𝛾1𝑟  and  𝛾1𝑑  are the radiative and 

dissipative coupling rate of Resonance 1. Even if the FWHM1 is very small, if Resonance 1 is 

under-coupled (𝛾1𝑟 < 𝛾1𝑑) the device will fail to cover the range 0-2π in phase modulation as 

shown in Fig.1a and Supplementary Fig. 4b. A decrease in 𝛾1𝑑 while 𝛾1𝑟 is kept constant, on 

the other hand, is beneficial not only because it decreases the FWHM1 but also increases the 

ratio 𝑝 = 𝛾𝑟/𝛾𝑑 , thereby increasing the reflection amplitude through 𝑅 = |𝑟|2 = 1 −

4𝑝/(𝑝 + 1)2 and making it more uniform as shown in Supplementary Fig. 4c. It is evident 

that the complex reflection amplitude draws a larger phase modulation circle while having a 

more uniform radius in Supplementary Fig. 4c than the reference case in Supplementary Fig. 

4a.  

• 𝜸𝟏𝒓 should not be too small compared to 𝜸𝟐𝒅: Even if it's ensured that Resonance 1 stays 

highly over-coupled ( 𝛾1𝑟 ≫ 𝛾1𝑑 ), decreasing 𝛾1𝑟  does not always bring performance 

enhancement. If 𝛾1𝑟  is much smaller than 𝛾2𝑑  of Resonance 2 in terms of their order of 

magnitudes (𝛾1𝑟 ≪ 𝛾2𝑑), the phase modulation will fail to cover the range 0-2π as shown in 

Supplementary Fig. 4d, a case where both 𝛾1𝑟 and  𝛾1𝑑 are decreased while keeping 𝛾2𝑑 the 

same as the reference. This is because the hybridized mode (with the characteristics of having 

both 𝛾1𝑟 and 𝛾2𝑑) will be too under-coupled near the avoided crossing region and the phase 

modulation will fail to circle around the origin. 

• Resonance 2 should be highly tunable (∆𝝎𝟐 > FWHM1): Having a greater ∆𝜔2 will lead 

to a better phase modulation performance. This is because the hybridized modes will cross the 

operating frequency in greater speed as the control parameter (in our case the Fermi level) is 

varied. This is illustrated in Supplementary Fig. 4e.  
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From the discussions above, we can combine the different cases and plot the ideal case of having 

large ∆𝜔2 and small 𝛾1𝑟 , 𝛾1𝑑, 𝛾2𝑑 with 𝛾1𝑟 ≫ 𝛾1𝑑 & 𝛾1𝑟 > 𝛾2𝑑, as shown in Supplementary Fig. 

4f.  

 
Supplementary Figure 4. Dependence of the phase modulation performance with respect to different 

TCMT parameters shown in Supplementary Table 1. a, The complex reflection amplitude for the 

reference TCMT parameter case. b, The under-coupled case where 𝛾1𝑟 = 𝛾1𝑟
0 /30 and 𝛾1𝑑 = 𝛾1𝑑

0 , with 

other parameters kept the same. The details are shown in Table S1 below. c, The case where 𝛾1𝑟 = 𝛾1𝑟
0  and 

𝛾1𝑑 = 𝛾1𝑑
0 /30. d, The case where 𝛾1𝑟 = 𝛾1𝑟

0 /30 and 𝛾1𝑑 = 𝛾1𝑑
0 /30 with 𝛾2𝑑 = 𝛾2𝑑

0 . e, The case where 

∆ω2 = 3∆ω2
0. f, The ideal case where 𝛾1𝑟 = 𝛾1𝑟

0 , 𝛾1𝑑 = 𝛾1𝑑
0 /30, 𝛾2𝑑 = 𝛾2𝑑

0 /30 and  ∆ω2 = 3∆ω2
0. 

 

  



 

 

13 

 

Case Δω2 γ1r γ1d γ2d 

Reference (Supplementary Fig. 4A) Δω2
0 γ1r

0  γ1d
0  γ2d

0
 

Undercoupled qBIC (Supplementary Fig. 4B) Δω2
0 γ1r

0 /30 γ1d
0  γ2d

0  

Small γ1𝑑 (Supplementary Fig. 4C) Δω2
0 γ1r

0  γ1d
0 /30 γ2d

0  

Small γ1𝑟, Small γ1𝑑 (Supplementary Fig. 4D) Δω2
0 γ1r

0 /30 γ1d
0 /30 γ2d

0  

Large Δω2 (Supplementary Fig. 4E) 3Δω2
0 γ1r

0  γ1d
0  γ2d

0  

Ideal (Supplementary Fig. 4F) 3Δω2
0 γ1r

0  γ1d
0 /30 γ2d

0 /30 

 
Supplementary Table 1. The numerical values/functions of the TCMT parameters used in 

Supplementary Fig. 4. 
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Supplementary Note 7. Relocation of the avoided crossing for limited Fermi 

level tuning range 

The device presented in the main paper can only cover 282° for EF = 0-0.6eV as shown in Fig. 3d. 

The reason for this sub-2π phase coverage is that the device utilizes only one resonance in this EF 

range since the avoided crossing between the graphene plasmon resonance and qBIC mode occurs 

at the upper bound of the EF range (EF = 0.6 eV). As mentioned before, achieving full 2π coverage 

requires having a double crossover between the operating frequency line and the two hybrid modes. 

Therefore, to have a better phase coverage with a limited EF tuning range, the device parameters 

should be altered to have the avoided crossing at a lower Fermi level. This can be done by either 

narrowing the center graphene width to obtain the GP resonance at a lower Fermi energy or by 

increasing the meta-atom period to lower the frequency of the qBIC resonance. The other design 

parameters, which determines the radiative and dissipative decay rates of the resonances, also need 

to be fine-tuned to achieve a nearly uniform reflection amplitude.  

To test this possibility, we conducted an optimization for 0-0.6eV Fermi level range as shown in 

Supplementary Fig. 5. Compared to the structure presented in the main paper (blue line in 

Supplementary Fig. 5a), the low-EF-optimized device (red line in Supplementary Fig. 5a) has a 

15.6% longer period Λ but the gap between the Si pillars is nearly the same for the two structures. 

As shown in Supplementary Fig. 5a, the reflection curve of the low-EF-optimized device can cover 

full 2π phase change while its magnitude is slightly lower than the curve in Fig. 3d. Note that, as 

shown in Supplementary Fig. 5b, c, the avoided crossing occurs at around EF = 0.5 eV, which is 

included in the 0-0.6 eV tuning range. 
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Supplementary Figure 5. Full wave calculations of the reflected light for a dimerized Si grating with 

a relocated avoided crossing, optimized for a limited Fermi level tuning range.  a, The complex 

reflection amplitude plots for the structure presented in the main paper and a structure optimized for a 

limited EF range of EF = 0-0.6eV. The parameters are: period Λ = 6155 nm, h = 61 nm, d = 896 nm, w = 

888 nm, δ = 34.9 %, center gap = 38.7 nm, side gap = 4340 nm, and operating frequency = 37.64 THz. b, 

c, The reflectance and the phase color plot, respectively, for the new structure. The operating frequency is 

shown as the dotted line. 
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