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Supporting Note S1: Fano formula 

Optical resonance can be described by the Fano resonance formalism when it arise from the interaction 

between a discrete eigenstate (an indirect coupling pathway) and a continuum (a direct coupling pathway) [1]. In 

the proposed structure, the guided-mode resonance and the Fabry-Perot resonance correspond to the discrete 

eigenstate and the continuum, respectively. Therefore, the line shapes of the resonances can be modeled by the 

Fano formula [1,2]: 

𝐼Fano(𝜔) =
𝐼res

1 + 𝑞2

(𝑞 + 𝛺2)

1 + 𝛺2
+ 𝐼non−res (S1) 

where ω is the light frequency, q is the Fano parameter determining the asymmetric profile, Ires and Inon-res describe 

the resonant peak amplitude and the non-resonant contribution, respectively. Ω is the dimensionless frequency 

defined by Ω=(ω-ωres)/γ, where ωres is the resonant frequency and γ corresponds to the damping rate of the 

resonance. Here, the damping rate (γ) is the summation of the absorption rate (γa) and the scattering rate (γs). The 

damping rate can be evaluated by γ=Δω/2, where Δω is the full-width half maximum of the resonance. From these 

parameters, the Q-factor is determined by ωres/Δω. 

To analyze the resonances presented in the manuscript, we fit the spectra into the Fano formula. As an 

example, the fitting results of the Fig. 2(c-d) in the manuscript are shown in Fig. S1. The solid lines are the spectra 

obtained in full-wave simulations, and the dashed lines illustrate the Fano profiles fitted by Eq. (S1). 

 

 
Figure S1. (a-c) Transmission (T) and reflection (R) spectra presented in Fig. 2(a) in the manuscript (solid lines) and Fano 

profiles (dashed lines) fitted by Eq. (S1) with different Fano parameters (q). 

 

As shown in Fig. S1, the Fano parameters (q) determine the asymmetric profile. When |q|~1, the interaction 

between the guided-mode resonance and the Fabry-Perot resonance is balanced, and it produces the general 

asymmetric form of the Fano resonances, as shown in Figs. S1(a) and (c). The sign of the Fano parameter 

characterizes the phase relation between the two resonances, and it regulates the direction of the Fano profile. On 

the other hand, the guided-mode resonance, or the discrete eigenstate, dominates the Fano response if |q|≫1. In 

this case, the Fano response in Eq. (S1) becomes the Lorentzian function. In this case, the overall high-Q resonant 

feature is invoked by the guided-mode resonance dominantly, and the Fabry-Perot resonance determines the non-
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resonant term [1]. As a result, both the transmission and the reflection transit rapidly between zero and unity at the 

resonance, as illustrated in Fig. S1(b). 

 

 

Supporting Note S2: Effect of intrinsic absorption in dielectric materials 

 
Figure S2. (a-e) Transmission (T) and reflection (R) spectra with different k values, or the imaginary parts of the refractive 

indices, imposed on SiO2, SiNx, and Si. The structural parameters are equal to those in Fig. 3 in the manuscript. (f) 

Transmission efficiency (ηT = 1-Tmin/Tmax), reflection efficiency (ηR = 1-Rmin/Rmax) at EF=0.6 eV as a function of the k value. 

 

 

Supporting Note S3: Temporal coupled mode theory 

The temporal coupled mode theory (TCMT) is a formalism that couples localized resonant modes within 

resonant structures to incoming and outgoing radiation modes in different radiation ports [3-5]. The theory is able 

to provide a scattering matrix for various photonic platforms hosting resonances, and is especially useful for 

dealing with high-Q resonances. 

Based on the TCMT, the dynamic amplitude (a) for a single resonance can be described by 

𝑑𝑎

𝑑𝑡
= (−𝑖𝜔res − 𝛾s − 𝛾a)𝑎 + 𝛋𝑇𝐬+ (S2) 
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𝐬− = 𝐂𝐬+ + 𝑎𝐝 (S3) 

where s+ and s- are the incoming wave and the outgoing wave, respectively, κ is the coupling coefficients between 

the resonance and the incoming wave, d is the resonance-assisted coupling coefficient, and C describes the direct 

couplings between the incoming wave and the outgoing wave. 

As described in Supporting Note S1, the guided-mode resonance, or the indirect coupling pathway, dominates 

the high-Q resonance. In addition, the contribution of the the Fabry-Perot resonances on the overall resonance, or 

the direct coupling pathway, is negligible because Tnon-res and Rnon-res are almost unity and zero, respectively, when 

the guided-mode resonance is not present. In this case, we can assume that the diagonal elements (C11 and C22) of 

the C are zero. Considering the energy conservation and the reciprocity (d†d=2γs, κ=d, and Cd*=-d), we can obtain 

the coefficients as 

𝛋 = 𝐝 = (
√𝛾s𝑒𝑖𝜃1

√𝛾s𝑒𝑖𝜃2
) (S4) 

𝐂 = ( 0 −𝑒𝑖(𝜃1+𝜃2)

−𝑒𝑖(𝜃1+𝜃2) 0
) (S5) 

where θ1 and θ2 corresponds to the phase of the coupling coefficients. Here, we obtain |𝜅i| = |𝑑𝑖| = √𝛾𝑠  with an 

assumption of slowly varying perturbation on each port [3]. In addition, the 𝑠2
− is zero because there is no incident 

light from the back side. Using these parameters, the reflectance (R), the transmittance (T), and the absorption (A) 

are derived as Eqs. (S6-S8) at a steady state (da/dt=-iωa). 

𝑅TCMT(𝜔) = |
𝑠1

−

𝑠1
+|

2

=
𝛾𝑠

2

(𝜔 − 𝜔res)2 + 𝛾2
 (S6) 

𝑇TCMT(𝜔) = |
𝑠2

−

𝑠1
+|

2

=
𝛾𝑠

2 − 2𝛾𝑠𝛾

(𝜔 − 𝜔res)2 + 𝛾2
+ 1 (S7) 

𝐴TCMT(𝜔) = 1 − 𝑅TCMT(𝜔) − 𝑇TCMT(𝜔) =
2𝛾𝑠𝛾 − 2𝛾𝑠

2

(𝜔 − 𝜔res)2 + 𝛾2
 (S8) 

When we compare these equations with the Fano formula in Eq. (S1), we can notice an important point of 

similarity. As described in Supporting Note S1, the resonant spectra are fitted with |q|≫1 because the guided-mode 

resonances dominate the systems. In this case, Eq. (S1) becomes a Lorentzian form as 

𝐼Fano(𝜔) ≈
𝐼res𝛾2

(𝜔 − 𝜔res)2 + 𝛾2
+ 𝐼non−res (S9) 

where Rnon-res≈0, Tnon-res≈1, and Anon-res≈0. In an ideal case, we can calculate the γs/γ analytically from the γ and the 

Ires given from the Fano formula fitting. 

In the evaluation of the γs/γ, one issue is that the non-resonant amplitudes (Inon-res) slightly differ from the ideal 

values. Indeed, this deviation comes from the non-resonant absorption in graphene and the non-infinite Fano 

parameter (q), which results in non-zero, albeit very small, diagonal elements in the direct scattering matrix in Eq. 
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(S5). To compensate for this deviation, we replace the offsets of Eqs. (S6-S8) with the Inon-res evaluated in the Fano 

formula, as given in Eqs. (S10-S12). Then, we can obtain the γs/γ that match the R, T, and A spectra with minimal 

errors. These approximations are valid because the Fano fitting results still satisfy the conditions of Rnon-res≈0, Tnon-

res≈1, Anon-res≈0, and |q|≫1. 

𝑅TCMT(𝜔) ≈
𝛾𝑠

2

(𝜔 − 𝜔res)2 + 𝛾2
+ 𝑅non−res  (S10) 

𝑇TCMT(𝜔) ≈
𝛾𝑠

2 − 2𝛾𝑠𝛾

(𝜔 − 𝜔res)2 + 𝛾2
+ 𝑇non−res (S11) 

𝐴TCMT(𝜔) ≈
2𝛾𝑠𝛾 − 2𝛾𝑠

2

(𝜔 − 𝜔res)2 + 𝛾2
+ 𝐴non−res (S12) 

The calculated γs/γ are presented in Fig. S3(a) as a function of the graphene Fermi level, and the γa/γ is given 

by 1-γs/γ. Figures S3(b-d) show the gate-dependent A, T, and R maps evaluated by Eqs. (S10-S12), and they show 

good agreement with the full-wave simulation results presented in Figs. 3(b-d) in the manuscript. It indicates the 

TCMT properly extracts the gate-dependent γs/γ. 

In addition to the calculation of the scattering rate and the absorption rate, the TCMT analysis shows the 

critical coupling of the high-Q resonance. From Eqs. (S8) or (S12), we can see that the ATCMT(ω=ωres) is maximized 

when γs/γ=1/2, or γa=γs. This condition corresponds to critical coupling, where the overall absorption is maximized 

as the absorption loss and the scattering loss are balanced [3,6]. 

 

 

 

Figure S3. (a) Gate-dependent absorption rate ratio (γa/γ) and scattering rate ratio (γs/γ) calculated from the TCMT. 

(b) Gate-dependent absorption (A), (c) transmittance (T), and (d) reflectance (R) maps calculated from the 

TCMT as a function of λ0. 
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