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S1. Transfer matrix formalism 

In our work, we use the transfer matrix formalism to calculate the field distribution inside 

the waveguide. An MIM waveguide has two fundamental eigenmodes obtained from the 

solution of Maxwell’s equations. We denote these eigenmodes as |𝑓⟩ and |𝑏⟩ where the letter 

f indicates “forward” (positive index) mode, having the direction of phase and energy velocities 

parallel to each other, and letter b indicates “backward” (negative index) mode, having 

antiparallel phase and energy velocities. Each eigenmode can propagate along either +z or –z 

direction, hence we further distinguish eigenmodes by their energy propagation direction by 

labelling with “+” and “–” signs. To sum up, there exist four plasmonic modes in a rainbow 

trapping MIM waveguide, indicated as |𝑓 +⟩, |𝑓 −⟩, |𝑏 +⟩, and |𝑏 −⟩.  

In order to derive the dispersion relation, and obtain the field profiles for those four TM2 

modes, one can solve Maxwell’s equations for planar MIM waveguide: ∇2𝐇 + 𝜔𝜀𝜇0𝐇 = 0. 

Since we are considering TM modes, only the y-component of the magnetic field exists, whish 

is assumed to have an exponential form (since we are solving for plasmonic waves): 

𝐻𝑦(𝑥) = {
𝐴𝑒𝛾2(𝑥+𝛼) (𝑥 ≤ −𝛼)     
𝐵𝑒−𝛾1𝑥 + 𝐶𝑒𝛾1𝑥 (|𝑥| < 𝛼)

𝐷𝑒−𝛾2(𝑥−𝛼) (𝑥 ≥ 𝛼)     

 

where 𝛾1 = 𝑘0√𝑛eff
2 − 𝜀𝑑, 𝛾2 =  𝑘0√𝑛eff

2 − 𝜀𝑚, 𝑛eff =
𝛽

𝑘0
 is the mode’s effective index, k0 

is the free-space wavevector, α is the half of the core thickness, and A, B, C, D are the complex 

amplitudes to be solved for. Then, from the Maxwell’s equations, we can directly obtain the 

electric field components: 𝐸𝑥(𝑥) =
𝛽

𝜔𝜀
𝐻𝑦 ,   𝐸𝑧(𝑥) =

𝑖

𝜔𝜀

𝜕𝐻𝑦

𝜕𝑥
 . At the interface between the 

metal and insulator (x = ±α), Hy and Ez fields should be continuous. Under this boundary 



condition, we obtain the complex amplitudes and a closed-form dispersion relation neff(ω) for 

the planar MIM waveguide: 

 𝑒−2𝑈 =
𝑈

𝜀𝑑
⁄  + 𝑊

𝜀𝑚
⁄

𝑈
𝜀𝑑

⁄  − 𝑊
𝜀𝑚

⁄
 

where 𝑈 = 𝛼𝑘0√𝑛eff
2 − 𝜀𝑑 = 𝛼𝛾1, and 𝑊 = 𝛼𝑘0√𝑛eff

2 − 𝜀𝑚 = 𝛼𝛾2. Numerically solving the 

dispersion relation, we calculate the effective mode index neff for |𝑓 +⟩, |𝑓 −⟩, |𝑏 +⟩, and 

|𝑏 −⟩ modes, and obtain fields profile for each mode, starting with magnetic field: 

𝐻𝑦(𝑥) = {

𝑒𝛾2(𝑥+𝛼)   (𝑥 ≤ −𝛼)               
(𝑒−𝛾1𝑥 + 𝑒𝛾1𝑥)/2cosh (𝛼𝛾1) (|𝑥| < 𝛼)

𝑒−𝛾2(𝑥−𝛼)  (𝑥 ≥ 𝛼)                

. 

Now, the four modes are normalized in order to apply the transfer matrix formalism. We 

normalize the field components of each eigenmode Em and Hl by √|𝑁𝑚𝑙| =

√|∫(𝐄𝑚 × 𝐇𝑙 + 𝐇𝑚 × 𝐄𝑙)𝑧/4𝑑𝑥|, which leads to the modes orthogonality condition: 

∫(𝐞𝑚 × 𝐡𝑙 + 𝐡𝑚 × 𝐞𝑙)𝑧/4𝑑𝑥 =  {

𝑁𝑚𝑙

|𝑁𝑚𝑙|
(𝑚 = 𝑙)

0   (𝑚 ≠ 𝑙)
  𝑚, 𝑙 = |𝑓 +⟩, |𝑓 −⟩, |𝑏 +⟩, |𝑏 −⟩, 

where 𝐞𝑚 and 𝐡𝑙 are the normalized mth electric and lth magnetic field vectors. Note that the 

direction of x, y, z axis are identical to those in the main text. 

To apply the transfer matrix formalism, we approximate the waveguide as a cascade of thin 

parallel waveguide segments (of constant thickness). There are two types of matrices involved 

in the transfer matrix method; one is the propagation matrix which accounts for the wave 

propagation in each waveguide segment, and the other is the interface matrix which accounts 

for the mode coupling at the interface of the neighboring waveguide segments. The propagation 

matrix for the mth eigenmode at jth thin parallel waveguide component is calculated as 𝑇𝑗,𝑙𝑚 =

𝛿𝑙𝑚 exp(𝑖𝑛eff𝑘0∆𝑧), where ∆𝑧 is the lateral length of the thin waveguide segment.  

The interface matrix accounts for the mode coupling at the interface of the two neighboring 

waveguide segments since the change of the core thickness induces the change in the mode 

amplitude. This conversion is computed with butt-coupling coefficients in coupled-mode 

theory, which composes the elements in an interface matrix. The interface matrix between jth 

and (j+1)th waveguide segments is given by: 



𝑆𝑗,𝑙𝑚 =
(∫(𝐞𝑙

𝑗+1
× 𝐡𝑚

𝑗
)

𝑥
𝑑𝑥 + ∫(𝐞𝑚

𝑗
× 𝐡𝑙

𝑗+1
)

𝑥
𝑑𝑥)

2 ∫(𝐞𝑙
𝑗+1

× 𝐡𝑙
𝑗+1

)
𝑥

𝑑𝑥
. 

Here, 𝐞𝑚
𝑗

  and 𝐡𝑚
𝑗

  are the electric field and magnetic field vectors of the normalized mth 

eigenmode in jth waveguide segment. 

To calculate the mode distribution inside the waveguide, we apply the boundary conditions 

such that the amplitude of |𝑓 +⟩ is unity at the input, amplitude of |𝑏 +⟩ mode is zero at the 

input, and the amplitudes of |𝑓 −⟩ and |𝑏 −⟩ modes disappear at the output. These boundary 

conditions reflect the fact that the |𝑏 +⟩ mode cannot exist at the input because it is neither 

excited nor reflected, and that |𝑓 −⟩ and |𝑏 −⟩ modes cannot exist at the output for the same 

reason (see Figure 1 in the main text). By imposing the boundary conditions to the transfer 

matrices, the following system of equations for the complex mode amplitudes a are obtained: 

[

𝑎out,𝑓+

0
𝑎out,𝑏+

0

] = ∏ 𝑆𝑖𝑇𝑖 [

1
𝑎in,𝑓−

0
𝑎in,𝑏−

]. 

Then, by applying the transfer matrix, we obtain the amplitudes at any jth waveguide segment: 

[

𝑎𝑗,𝑓+

𝑎𝑗,𝑓−

𝑎𝑗,𝑏+

𝑎𝑗,𝑏−

] = ∏ 𝑆𝑖𝑇𝑖

𝑗−1

𝑖=0
[

1
𝑎in,𝑓−

0
𝑎in,𝑏−

]. 

Therefore, total electromagnetic field in jth waveguide segment Ej, Hj can be expressed in terms 

of normalized eigenmodes and their amplitudes: 

𝐄𝑗 =  𝑎𝑗,𝑓+𝐞𝑓+
𝑗

+ 𝑎𝑗,𝑓−𝐞𝑓−
𝑗

+ 𝑎𝑗,𝑏+𝐞𝑏+
𝑗

+ 𝑎𝑗,𝑏−𝐞𝑏−
𝑗

 

𝐇𝑗 =  𝑎𝑗,𝑓+𝐡𝑓+
𝑗

+ 𝑎𝑗,𝑓−𝐡𝑓−
𝑗

+ 𝑎𝑗,𝑏+𝐡𝑏+
𝑗

+ 𝑎𝑗,𝑏−𝐡𝑏−
𝑗

 

With known complex mode amplitudes and fields along the waveguide, we calculate the energy 

density u and the light trapping quality factor, maximized by the optimization algorithm via the 

modification of waveguide profile (as described in the main text). 

 

 



S2. Optimization approach: details 

We use three optimization methods, Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO) and Bound Optimization BY Quadratic Approximation (BOBYQA) in optimization 

process [S1–S3]. We constructed our own code for GA, but for PSO and BOBYQA, Python 

library PySwarm [S4] and PyBOBYQA [S5,S6] were used. BOBYQA is a numerical 

optimization method based on the trust-region method. We utilize the derivative-free 

characteristic of the algorithm since deriving the analytic derivative of a quality factor along 

thickness α is not a trivial task. PSO is a pool-based algorithm as well as GA. This algorithm 

uses multi-particle to find the global optimum in the constraint region while sharing the best 

location of the entire swarm. 

 

Figure S1. Bezier curve (blue line) based on the 10 control points (red triangles). Note that 

the input (0, αin) and output (8, αout) points are fixed, and therefore not counted as control 

points. 

To model the waveguide core profile in a way suitable for optimization, we use Bezier curve 

which is built based on the set of control points, as shown in Figure S1. We used ten control 

points to model the waveguide core profile. The number of control points were empirically 

determined such that the quality factor converges at the fastest rate, since their number must be 

large enough to provide enough degrees of freedom to the Bezier curve (hence, the 

optimization). The same set of control points was used as an input for all three algorithms as 

well as the constraints on their coordinates allowed during the optimization. The points 

coordinates were limited as follows: x coordinate should be in the range [0, L], where L is the 

length of the optimized waveguide, and y coordinate should be in the range [αout, αin], where 

αout = 0.616 and αin = 0.648 are the semi-thickness of the core at the input and output ports, 

respectively (see the main text for details).  



In the GA case, the coordinates of ten control points (xi, yi) acted as genes, and the Bezier 

curve created from these genes acted as a chromosome. In the selection-based operation of GA, 

a specific amount of superior chromosomes was selected based on its quality factor by the 

“roulette wheel” selection. Then, selected chromosomes created the next-generation 

chromosome pool through the crossover and mutation operations. Crossover operation was 

implemented such that genes in the newly created chromosome are the weighted sum of the 

genes in previously selected chromosomes: (xcrossover, ycrossover) = ∑(wixi, wiyi), where weights 

wi form a uniform random distribution. Then, these genes were slightly modified by the 

mutation operation, where each gene (xcrossover, ycrossover) was mapped to (xmutation, ymutation) = 

(xcrossover + δ, ycrossover + ε). Here, δ and ε form a Gaussian distribution of N(0, 0.0012). 

For the PSO case, we used an open-source Python library PySwarm. Further information 

about the algorithm itself can be found elsewhere. We set swarm size as 30. For BOBYQA, we 

used open-source Python library Py-BOBYQA. Optimization region bounds are identical to 

those used in PSO, and we utilized the software’s global optimum finding feature. 

 

S3. Evidences for successful optimization 

To check if our optimization successfully reached near the upper bound of the quality factor, 

we show two numerical simulations and provide a physical interpretation of the optimized 

quality factor. First, in order to check whether the optimum that we obtained is not on the path 

to the other local optimum with higher quality factor, we used the result obtained with PSO as 

an input to BOBYQA. Because BOBYQA is a trust-region-based method to find the local 

optimum near the initial input, the algorithm may converge to an optimum with a higher quality 

factor if the initial point is in the vicinity of it. However, the local optimum obtained with 

BOBYQA had almost the same quality factor and similar waveguide shape (Figure S2). This 

is a convincing evidence that the initial result (profile generated by PSO) is a local optimum. 

Second, we calculated the quality factor of waveguide mixes, created from a pair of 

optimized waveguide profiles. The mixture profiles were constructed by linear mixing of the 

thickness of the two waveguides at same lateral position, with a mixing weight varying from 

zero to unity (i.e. migration from one profile to another). As shown in Figure S3, mixtures of 

all pairs exhibit lower quality factor compared to the original waveguide geometries. This 

shows the three optimized curves obtained from GA, PSO, and BOBYQA are in distinct local 



optimum regions. Furthermore, the quality factors obtained from mixing the waveguides were 

the lowest in BOBYQA-GA pair. We speculate that the significant drawback in the quality 

factor is due to the larger difference between BOBYQA- and GA-generated geometries. 

 

Figure S2. Input waveguide profile obtained from PSO (blue solid), and output waveguide 

profile achieved by BOBYQA (blue dotted) using the PSO-generated profile as an input. 

 

 

Figure S3. (a) Quality factor of mixed profiles as a function of mixing weight: PSO and 

GA (yellow dash-dotted), BOBYQA and GA (green dotted), BOBYQA and PSO (red solid). 

Mixed profiles are visualized as filled regions between the profile pairs being mixed: (b) PSO 

and GA (yellow), (c) BOBYQA and GA (green), (d) BOBYQA and PSO (red). 



Finally, we verify that the achieved local optima are in the proximity of the theoretically 

limited upper bound Qub for the quality factor. We assume that the theoretical limit for the 

quality factor corresponds to the case when the incident |𝑓 +⟩ mode propagates through an 

infinitely long parallel waveguide with its core thickness selected to maximize the ratio ωu/P 

between the time-averaged energy density u and the absorption loss P. We also confirmed that 

the maximum possible ωu/P for |𝑏 +⟩ mode is much smaller than that for |𝑓 +⟩ mode due 

to different field profile (in the MIM case, larger part of the |𝑏 +⟩ mode resides in the metal, 

hence the negative index, leading to a higher Ohmic loss). Note that ωu/P is constant along the 

parallel waveguide, so calculating ωu/P only for the cross-section at given core thickness is 

sufficient. ωu/P for |𝑓 +⟩ mode as a function of the core thickness is shown in the Figure 

S4(a), and Qub = max{ωu/P}. Optimized light trapping quality factor Qopt is as close to the 

upper bound as 99%, confirming the successful optimization (Figure S4(b)). 

 

Figure S4. (a) ωu/P as a function of waveguide thickness for different metal loss γ. (b) 

Optimized quality factor Qopt as a function of metal loss γ for the segment of length Lk0 = 8 

(black solid line and triangles) and theoretical upper bound Qub (red triangles). 

 

S4. Number of control points for Bezier curve 

We optimized the system for different number of control points from 1 to 20 in order to 

analyze the importance of the number of points for the optimization performance. The results 

(Figure S5) show that the optimized quality factor is practically insensitive to the number of 

control points starting with three: the difference between the maximum and minimum values 

is only about 0.1%. Two control points failed to achieve high quality factor, with the best result 

at least 40% lower than that using three points. Therefore, we conclude that using as few as 

three control points is enough to reach the best possible optimization results. 



 

Figure S5. Optimized quality factor Qopt (data points) as a function of number of control 

points for Bezier curve. Data obtained with transfer matrix method. 

 

S5. Logarithmic scaling law of the quality factor in IMI structure 

To support our argument on the relationship between the metal loss γ, the characteristic 

length Lc, and the optimized quality factor Q (from now, we treat Q as Qopt since we focus on 

optimized quality factors), we conducted the same optimization process to IMI structure. We 

set input and output core thickness as αk0 = 0.0282 and 0.0298 respectively. The input and 

output thicknesses were selected to include the degeneracy point (similar to the MIM case 

described in the main text). The dielectric permittivities of the insulator and metal were set the 

same as for MIM structure: εd = 10 and εm = –2 + γi. IMI TM0 |𝑓 +⟩ mode was used as an 

incident one and we imposed the identical boundary conditions as in the MIM case: amplitude 

of the |𝑏 +⟩ mode at the input, and |𝑓 −⟩ and |𝑏 −⟩ modes at the output were set to zero. 

The set of optimization processes was conducted for the different metal losses ranging from γ 

= 0.002 to γ = 0.02, and the waveguide lengths were swept between Lk0 = 0.1 and Lk0 = 15. 

However, we used slightly different optimization settings for the IMI waveguide: six control 

points were used to model the core profile, and the GA was iterated for 300 epochs since it 

converged at slower rate compared to the MIM case. 

The optimization results for different sets of parameters are shown in Figure S6. Most 

importantly, the relationship between optimized Q and γ-1 is linear at sufficiently long length, 

same as in MIM structure. Furthermore, the characteristic length Lc scales with log(γ-1), also 

similar to the MIM case. Therefore, we speculate that observed relationships for Q(γ-1) and 

Lc(γ
-1) are not restricted to MIM structure, but general for all free-form plasmonic waveguides. 



 

Figure S6. (a) Schematics of a free-form IMI light trapping plasmonic waveguide; the 

curvature is exaggerated. (b) Optimized quality factor as a function of the waveguide length L 

and metal loss γ. (c) Normalized quality factor Q/Q∞ as a function of L for different loss 

values. (d) Characteristic length Lc versus the logarithm of inverse metal loss (data points; 

solid line is the least-square linear fit). All data obtained with the transfer matrix method. 

S6. Discussion on quality factor to mode volume ratio 

We calculate effective mode volume Veff as a measure of spatial light trapping capability. 

Effective mode volume Veff can be calculated as Veff = AeffLy, where Aeff = U/max{u(x,z)} is the 

effective mode area, and Ly is the diffraction-limited transverse length; Ly = λ0/2nd. Figure S7 

shows Q/Veff as a function of waveguide length L. For all considered loss γ, Q/Veff has its 

maximum at a certain waveguide length. Considering that Q saturates and Aeff inherently 

increases along L, max{Q/Veff} can be interpreted as an optimal balance between the spatial 

and temporal light localization.  



 

Figure S7. The ratio of quality factor Q to mode volume Veff, normalized by (λ0/nd)
-3. 

 

S7. Optimization examples using realistic materials 

For the visible frequency range, we choose the free-space wavelength of 400 nm. In this 

frequency range, it is difficult to find materials with permittivity values that satisfy the 

existence condition for both positive and negative index TM2 mode in the MIM waveguide, 

which provides efficient light trapping. We select TiO2 (ε ≈ 7.09 + 0.002i) [S7] for the dielectric 

and single-crystal Ag (ε ≈ –1.7 + 0.15i) [S8] for metal layer. Single-crystal Ag [S8] exhibits 

small loss compared to the bulk silver, due to the lower number of impurities. Using these 

materials, we optimized the waveguide having the input port thickness αin = 53.5 nm, output 

port thickness αout = 42.86 nm, and length L = 154.7 nm. Input and output port thicknesses are 

selected to have the degeneracy value between them. Obtained waveguide profile shows quality 

factor of Q = 82.3, which is 2.2 times higher compared to that of the linearly tapered waveguide 

Q = 37.1 under similar conditions. The profile of this waveguide is shown in Figure S8(a). 

However, as becomes evident from the profile plot, the nanometer-scale dimensions of this 

waveguide are not feasible for fabrication. 

To increase the overall size of the waveguide, we conduct another optimization, selecting the 

free-space wavelength of 11 μm in a widely used mid-IR frequency range. At this wavelength, 

several dielectric materials (Si, GaAs, Ge, ZnSe, ets.) exhibit very low loss and large real part 

of permittivity; we use Ge (ε ≈ 16.01) which has negligible loss at selected frequency [S9]. As 

metal, we use polar dielectric SiC (ε ≈ –3.8 + 0.125i), employing its reststrahlen phonon bands 

[S10-S12] where the real part of permittivity satisfies the necessary TM2 existence conditions. 



Using these materials at mid-IR frequency, we optimized the waveguide having the input 

port thickness αin = 0.985 μm, output port thickness αout = 0.784 μm, and length L = 2.6 μm. 

As in the previous case, input and output ports thicknesses are calculated to enclose the 

degeneracy point between them. Obtained waveguide profile shows quality factor of Q = 198.7, 

which is 5.2 times higher compared to that of the linearly tapered waveguide Q = 38.2 under 

similar conditions. The profile of this waveguide is shown in Figure S8(b). In this case, the 

geometrical dimensions are in micrometer-scale range, and the curvature of the core is smooth 

enough to be fabricated by modern methods: thickness changes by ≈100 nm along the 1 μm 

segment. 

 

Figure S8. Waveguide profile obtained as a semi-realistic demonstration, (a) at 400 nm 

free-space wavelength, using TiO2 and single-crystal Ag as dielectric and metal layer 

respectively, (b) at 11 μm free-space wavelength, using SiC and Ge as metal and dielectric 

layer respectively. 
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