Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting

Min Seok Jang and Harry Atwater

Thomas J. Watson Laboratories of Applied Physics,

California Institute of Technology, MC 128-95, Pasadena, California 91125, USA

Figure S1. (a) Q and (b) A_{eff} of TM₁ modes in a Ag/GaP/Ag rainbow trapping structure as functions of free space wavelength. For $\alpha_0 = 50$ nm and $\theta = 5^\circ$, we obtain $Q \sim 30{\text{-}}60$ and $A_{\text{eff}} \sim 0.01{\text{-}}0.1$ throughout the target wavelength range. As the excitation wavelength approaches the surface plasmon resonance wavelength (~540nm), the mode becomes highly lossy and more confined near Ag/GaP interfaces. In this regime, the system is dominated by propagation loss rather than the effect of rainbow trapping. Therefore, small A_{eff} near the surface plasmon resonance wavelength is not the direct

consequence of the rainbow trapping effect. A_{eff} is normalized by $(\lambda_0 / n_1)^2$.